
How to Lose FP at Work
If you're looking to lose functional programming at work, here are a
bunch of mistakes I've made on JS-heavy web teams over the
years that can help you do the same! /s

web !" rwp.im
github !" rpearce
email !" me@robertwpearce.com
tweeter !" @RobertWPearce

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

About me
! Work at Articulate (articulate.com / rise.com) doing web dev work (heaps

of accessibility work, too)

! 12 years experience in the web world

! Enjoy Nix(

⚙

), Haskell(λ), Rust(

"

), Elixir(

#

), and even Go(

$

) on the side

! Was writing the Ramda Guide (ramda.guide), but life intervened, and I may
strip it for parts

! Perpetual beginner-/intermediate-level FP practitioner

! Am a dad with another on the way!

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://articulate.com
https://rise.com
https://ramda.guide
https://twitter.com/RobertWPearce
https://rwp.im

Disclaimers/Heads up
! This backwards-style talk will be sarcastic, snarky, and cringey

! The examples are more JS-oriented, but the commentary is
mostly universal

! The examples are all my examples and personal work-related
head-canon; this should not reflect poorly on my colleagues nor
my employer

! The slides aren't shouting at you — they're shouting at me

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

"Do"s and "Don't"s

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Don't
have static type checking

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

! No TypeScript

! No Flow

! No ReasonML

! No Elm

! No (insert language with static type checking that compiles to
JS)

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://www.typescriptlang.org
https://flow.org
https://reasonml.github.io
https://elm-lang.org/
https://twitter.com/RobertWPearce
https://rwp.im

const processData = composeP(syncWithBackend, cleansePII, validateData)

!" * What arguments and their types are expected here?
!"
!" * If each function is written like this, how can
!" one suss out what data are flowing where?
!"
!" * How hard is this going to be to debug?
!" Use this everywhere: `(x) !# (console.log(x), x)`

So the point-free style is the problem? Not so fast…

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

async function processData(data) {
 await validateData(data)
 const cleansedData = cleansePII(data)
 await syncWithBackend(cleansedData)
 return data
}

!" or for the Promise-chainers…

const processData = data !#
 validateData(data)
 .then(cleansePII)
 .then(syncWithBackend)
 .then(() !# data)

!"

!

 Are these any clearer? Y/n? ¯_(ツ)_/¯

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Don't
use well-known documentation tools

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

! No jsdoc

! …are there any other JS contenders?

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://jsdoc.app
https://twitter.com/RobertWPearce
https://rwp.im

Deprive your team of this clarity and helpful auto-completion:

/**
 * @typedef {Object} ReportingInfo
 * @property {("light"|"dark")} userTheme - Current user's preferred theme
 * @property {string} userName - Current user's name
 * @property {UUID} postId - The current post's ID
 !"

/**
 * Validates that the reporting data (current user site prefences and post info)
 * is OK, removes personally identifiable information, syncs this info with the
 * backend, and gives us back the original data.
 *
 * @param {ReportingInfo} data - The current user's site preferences and post info
 * @returns {Promise<ReportingInfo>} - The original reporting data
 !"
const processData = data !# { !$ … !" }

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Don't
properly train new and existing

colleagues

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

"Here, go read all these posts and
books, watch these videos, and let

me know if you have any questions!"
— Me

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Don't
bother getting the other

engineering teams on board and
rowing

!

 in the same direction
@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

! "If I build it, they will notice… right?"
❌

! Idea: Lunch 'n learn about FP?

❌

! Idea: Meet with other team leaders?

❌

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
live by "Point-free or die"

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

"Think it's point-less?
Go watch Point-Free or Die:

Tacit Programming in
Haskell and

Beyond by Amar Shah"
— Me

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://www.youtube.com/watch?v=seVSlKazsNk
https://www.youtube.com/watch?v=seVSlKazsNk
https://www.youtube.com/watch?v=seVSlKazsNk
https://www.youtube.com/watch?v=seVSlKazsNk
https://twitter.com/RobertWPearce
https://rwp.im

import { !", any, lt } from 'ramda'
const anyLt0 = any(lt(0, !")) !# hint: this has a bug in it
anyLt0([1, 2, 3]) !# true — ugh…

!# vs. the probably pretty simple…

const anyLt0 = numbers !$ numbers.some(n !$ n < 0)
anyLt0([0, 1, 2, 3]) !# false
anyLt0([0, 1, 2, -1, 3]) !# true — looks good

!#
!#
!#

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

import { !", any, lt } from 'ramda'
const anyLt0 = any(lt(0, !")) !# hint: this has a bug in it
anyLt0([1, 2, 3]) !# true — ugh…

!# vs. the probably pretty simple…

const anyLt0 = numbers !$ numbers.some(n !$ n < 0)
anyLt0([0, 1, 2, 3]) !# false
anyLt0([0, 1, 2, -1, 3]) !# true — looks good

!#

!

 should we resist eta-converting this?!
!#
!#

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

import { !", any, lt } from 'ramda'
const anyLt0 = any(lt(0, !")) !# hint: this has a bug in it
anyLt0([1, 2, 3]) !# true — ugh…

!# vs. the probably pretty simple…

const anyLt0 = numbers !$ numbers.some(n !$ n < 0)
anyLt0([0, 1, 2, 3]) !# false
anyLt0([0, 1, 2, -1, 3]) !# true — looks good

!#

!

 should we resist eta-converting this?!
!# …
!#

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

import { !", any, lt } from 'ramda'
const anyLt0 = any(lt(0, !")) !# hint: this has a bug in it
anyLt0([1, 2, 3]) !# true — ugh…

!# vs. the probably pretty simple…

const anyLt0 = numbers !$ numbers.some(n !$ n < 0)
anyLt0([0, 1, 2, 3]) !# false
anyLt0([0, 1, 2, -1, 3]) !# true — looks good

!#

!

 should we resist eta-converting this?!
!# …
!# NOT ON MY WATCH

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

const any = fn !" array !" array.some(fn)
const isLtN = x !" n !" x < n
const isLt0 = isLtN(0)
const anyLt0 = any(isLt0)

anyLt0([1, 2, 3]) !# true — ugh; the bug is back

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Real, but altered, example:

const finishItems = compose(
 flip(merge)({ isDone: true, amtComplete: 100 }),
 over(
 lensProp('indexedObjects'),
 mapVals(
 compose(
 over(lensProp('indexedObjects'), mapVals(assoc('isDone', true))),
 assoc('isDone', true)
)
)
)
)

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
prefer the wrong abstraction over

the right duplication
@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

"Prefer duplication over the wrong
abstraction"

— Sandi Metz’ RailsConf 2014 talk, All the Little Things

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://www.youtube.com/watch?v=8bZh5LMaSmE
https://twitter.com/RobertWPearce
https://rwp.im

Instead…

1. Dilute core business logic to broad generalizations

2. Fail to understand category theory enough for this to be useful

3. Be the only one who knows how these abstractions work

4. Previously thorough PR-reviews now look like "

!

"

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Don't
refactor old patterns that clearly

don't work for the team

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
force functional patterns into a
language that wasn't built for

them
@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

! Recursive functions

!Handle with trampolines if you really want them

! Cryptic stack traces thanks to currying and composing functions

!Debugging functional by Brian Lonsdorf

!Partially-applied (or curried) functions could
obfuscate the JavaScript stack trace by Thai
Pangsakulyanont

! No GHC-style fusing of .map(…).map(…).map(…)

! BYO algebraic data type libraries (they're well done, though)

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://github.com/getify/Functional-Light-JS/blob/master/manuscript/ch8.md/#trampolines
https://medium.com/@drboolean/debugging-functional-7deb4688a08c#.f0g8hif9c
https://medium.com/hackernoon/partially-applied-curried-functions-could-obfuscate-the-javascript-stack-trace-84d66bd8032e
https://medium.com/hackernoon/partially-applied-curried-functions-could-obfuscate-the-javascript-stack-trace-84d66bd8032e
https://twitter.com/RobertWPearce
https://rwp.im

Do
opaquely compose and sequence the
entirety of your API endpoints and

make them hard to debug
@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

On the surface, this isn't
so difficult to read…

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

!" handler for POST /posts
import { createPost } from 'app/db/posts'
import { authenticateUser, authorizeUser } from 'app/lib/auth'
import { trackEvent } from 'app/lib/tracking'

const validateRequestSchema = payload !# { !$ … !% }

export const handleCreatePost = curry(metadata !#
 pipeP(
 authenticateUser(metadata),
 authorizeUser(metadata),
 validateRequestSchema,
 createPost(metadata),
 tapP(trackEvent('post:create', metadata)),
 pick(['id', 'authorId', 'title'])
)
)

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Did you catch or wonder about
these?

! handleCreatePost expects 2 arguments?

! authenticateUser ignores the 2nd curried parameter sent to it?
How would you?

! Does trackEvent receive the payload passed through or the
result of the createPost() fn?

Let's try something else…

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

export async function handleCreatePost(metadata, payload) {
 await authenticateUser(metadata)
 await authorizeUser(metadata, payload)
 await validateRequestSchema(payload)

 const post = await createPost(metadata, payload)

 await trackEvent('post:create', metadata, post)

 return {
 id: post.id,
 authorId: post.authorId,
 title: post.title,
 }
}

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

✅
 Not forcing different
arity functions into a

pipeline pattern
!

 But if you want to make things
trickier for people, go with the

first approach

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
recreate imperative, procedural
programming while calling it

"declarative"
@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

const setBookReadPercentByType = (contentType, statusObject) !"
 assoc(
 'readPercent',
 pipe(
 prop('subItems'),
 values,
 filter(propEq(contentType, 'chapter')),
 length,
 flip(divide)(compose(length, keys, prop('subItems'))(statusObject)),
 multiply(100),
 Math.round
)(statusObject),
 statusObject
)

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
have 8+-ish different patterns for

function composition
@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

!
 These 4, plus Promisified versions of each, plus combinations of them all used

at once; doesn't include ramda's even more abstract composeWith and pipeWith

!" compose (plus composeP for Promises)
const getHighScorers =
 compose(
 mapProp('name'),
 takeN(3),
 descBy('score')
)

!" pipe (plus pipeP for Promises)
const getHighScorers =
 pipe(
 descBy('score'),
 takeN(3),
 mapProp('name')
)

!" composeWithValue
const getHighScorers = players !#
 composeWithValue(
 mapProp('name'),
 takeN(3),
 descBy('score'),
 players
)

!" pipeWithValue (plus pipePWithValue for Promises)
const getHighScorers = players !#
 pipeWithValue(
 players,
 descBy('score'),
 takeN(3),
 mapProp('name')
)

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
make yourself one of the few who
can debug algebraic data types

during midnight incidents
@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Ensure your team is surprised by
all of the following words when

debugging or altering your code in
the pursuit of their own tasks:

! Task, Maybe, Either, Result, Pair, State

! bimap
! chain
! bichain
! option

! coalesce
! fork
! sequence
! ap
! map — and I don't mean Array.prototype.map, nor

a new Map(), nor a key/value object

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
suggest, on PRs, that colleagues
completely refactor what they've
done to fit your functional style

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

"What you have here works great, but
what could this look like if we flipped all

the function arguments around,
removed all these intermediate

variables and if/else if/elses, and
mapped these operations over an

Either?"
— Me

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

"I noticed you're explicitly constructing
these objects in their functions. If

you were to use <UTILITY-FUNCTION>,
you could declare the shape of your

outputted object and use functions as
the values to look up or compute each

value given some data."
— Me

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Ok, last ones!

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
sow imposter syndrome in others
and exclude them by sharing non-

beginner FP articles
@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
Do keep writing code using FP

tools even when nobody else on the
team is

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
achieve peak perceived passive-
aggression by getting tired and

commenting PRs with emojis
@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Do
have "the FP talk" at work, and
then publicly own your mistakes

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Real-talk takeaways

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

We could write all this off as
symptoms of:

! Inexperience

! Lack of technical leadership from me

! Obviously not the right paths — so incompetence?

! I hope not; I think it's deeper

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Most things in life need to be
tended to

! our relationships
!

! our mental and physical health

"

#

! our gardens

$

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Paths can be accidentally
created, too

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

Some issues and failures that got
me here:

1. Persistent imposter syndrome

2. Feeling I just need to ship features and look out for myself

3. Not taking responsibility for a path I helped create

4. Not tending to things that needed tending to

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

But all is not lost!
The core tenets of FP seem to remain:

! Immutability

! Purity

! Moving effects to the conceptual edge of an application

! Very few classes and inheritance (React & web components
don't count), map/filter/reduce, etc.

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

The main point
Remember that the choices we do

and don't make significantly shape
our futures, so if you end up

somewhere, make sure you got there
on purpose.

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

That's it!
:q!

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

How to Lose FP at Work
web !" rwp.im
github !" rpearce
email !" me@robertwpearce.com
tweeter !" @RobertWPearce

@RobertWPearce | rwp.im | 2023-01-24 Auckland Functional Programming Meetup

https://twitter.com/RobertWPearce
https://rwp.im

